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Problem & Motivation
THE CHALLENGE OF MULTIPHASE FLOW
Fractures are ubiquitous in the subsurface and serve as
preferential channels for flow and transport. Investigating the
multiphase flow properties of fractures is important for many
engineering applications. These properties can be studied through
lattice Boltzmann method (LBM) simulations, but they require
high performance computing resources and have limited domain
sizes.

We present a physics-constrained machine learning model that
accurately predicts the displacement of water by supercritical CO2,
but only requires a few LBM simulations for training. By
generating efficient simulations of micro-scale multiphase flow in
fractures, we hope to investigate a wide range of fracture types
and generalize our method to larger discrete fracture network
simulations.

EXPERIMENTAL DATASET
Our dataset consists of twelve unique simulations of CO2 drainage
in shale fractures generated using the Taxila LBM simulator, an
open-source code developed at LANL. Each simulation has about
one hundred timesteps.

Methods

DATA PROCESSING
To make computations lightweight, and fracture size and aperture agnostic, we propose a workflow to project the 3D time-dependent data into 2 dimensions. The 3D fracture 
is projected into two 2D arrays that represent the position of the top and bottom surfaces of the fracture with respect to the simulation’s domain, which serve as inputs to our 
model. Subsequently, each timestep of the simulations is projected into two 2D arrays where the positions of the top and bottom of the menisci of the CO2 are recorded with 

respect to the fracture’s aperture size, serving as our prediction targets.

MACHINE LEARNING MODEL
Our machine learning model consists of a convolutional neural network based on the Residual U-Net [1] and ConvNeXt [2] architectures. It learns a mapping between the 
shape of the dry fracture and the position of the injected supercritical CO2 at 40 different timesteps throughout the simulation. We also supplement the base architecture 

with a series of constraints and auxiliary inputs. Our loss function is shown below.

We additionally augment our dataset during training by reflecting the 2D arrays across the x and y-axes, quadrupling the size of the data. Our model is trained for 20,000 
epochs per timestep, taking up 4 GB of GPU memory for about 4 hours.

Results
PREDICTIONS AND ACCURACY
When tested on eight unseen LBM simulations, our results show
that the model makes accurate predictions. In terms of CO2

saturation, predictions are approximately 95% accurate across all
timesteps. When projected back to 3D, the accuracy is about 98%.
While physics-based simulations require runtimes in the order of
days, our model trains in just a few hours and can predict on
various fracture geometries in a fraction of a second.
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